Dimension Exercises

Simple questions:

i. Assume \(\{\vec{u}, \vec{v}, \vec{w}\} \) spans a vector space \(V \). What can you say about \(\dim(V) \)?
Answer: \(\dim(V) \leq 3 \) because spanning set can be shrunk to a basis.

ii. Assume \(V \) is a vector space and \(\vec{u}, \vec{v} \) are LI vectors in \(V \). What can you say about \(\dim(V) \)?
Answer: \(\dim(V) \geq 2 \) because \(\{\vec{u}, \vec{v}\} \) is LI so it can be expanded to a basis.

iii. Assume \(\{\vec{u}, \vec{v}, \vec{w}\} \) spans a vector space \(V \) and \(2 \cdot \vec{v} - 3 \vec{w} = \vec{0} \). What can you say about \(\dim(V) \)?
Answer: \(\dim(V) < 3 \) since \(0 \cdot \vec{u} + 2 \cdot \vec{v} - 3 \vec{w} = \vec{0} \) implies \(\{\vec{u}, \vec{v}, \vec{w}\} \) is LD, can not be a basis but can be shrunk to a basis.

iv. Let \(V \) be a VS. If \(\vec{u}, \vec{v} \) are LI vectors in \(V \) but do not span \(V \), what can you say about \(\dim(V) \)?
Answer: \(\dim(V) > 2 \) because \(\vec{u}, \vec{v} \) are LI, not a basis, and can be expanded to a basis.

v. Let \(\{\vec{u}, \vec{v}, \vec{w}\} \) be LI in a vector space \(V \). If every vector in \(V \) is a LC of \(\vec{u}, \vec{v}, \vec{w} \), what can you say about \(\dim(V) \)?
Answer: \(\dim(V) = 3 \) because \(\{\vec{u}, \vec{v}, \vec{w}\} \) is LI and a spanning set, thus a basis.

vi. Let \(V \) be a VS of dimension 5 and \(W \) is a subspace of \(V \). What can you say about the \(\dim(W) \)?
Answer: \(\dim(W) \leq 5 \) since a subspace can't have higher dimension.

vii. Let \(V \) be a VS containing two vectors \(\vec{v} \neq \vec{0}, \vec{w} \neq \vec{0} \). What can you say about \(\dim(V) \)?
Answer: \(\dim(V) \geq 1 \), because \(\vec{v} \neq \vec{0} \) implies \(\{\vec{v}\} \) is LI and can be expanded to a basis. The other vector \(\vec{w} \neq \vec{0} \) can also be expanded to a basis, still \(\dim(V) \geq 1 \).

viii. A vector space \(V \) contains only a single vector. What can you say about \(\dim(V) \)?
Answer: The vector space containing only a single vector is the vector space \(V = \{\vec{0}\} \), so \(\dim(V) = 0 \).

Proof problems.

1. Assume \(\{\vec{u}, \vec{v}, \vec{w}\} \) spans a vector space \(V \) and there exist \(a, b \) such that \(\vec{u} + b \cdot \vec{v} + c \cdot \vec{w} = \vec{0} \).
Prove \(\dim(V) \leq 2 \).
Proof. \(\therefore \{\vec{u}, \vec{v}, \vec{w}\} \) spans \(V \)
\(\therefore \dim(V) \leq 3 \)
\(\therefore 1 \cdot \vec{u} + b \cdot \vec{v} + c \cdot \vec{w} = \vec{0} \) and 1, a, b are nontrivial
\(\therefore \{\vec{u}, \vec{v}, \vec{w}\} \) is not a basis.
\(\therefore \dim(V) \leq 2 \). QED.

2. Assume \(\{\vec{u}, \vec{v}, \vec{w}\} \) spans a vector space \(V \) and \(\dim(V) = 2 \). Prove \(\vec{u}, \vec{v}, \vec{w} \) are LD.
Proof. We shall prove the conclusion by contradiction.
Assume \(\vec{u}, \vec{v}, \vec{w} \) are LI. Then they can be expanded to a basis so \(\dim(V) \geq 3 \). This is a contradiction to \(\dim(V) = 2 \). \(\therefore \vec{u}, \vec{v}, \vec{w} \) are LD. QED.
3. If \(\{ \vec{u}, \vec{v} \} \) is a LI subset of a vector space \(V \), prove \(\dim(V) \geq 2 \).
Proof. \(\because \{ \vec{u}, \vec{v} \} \) is LI in \(V \) and thus can be expanded to a basis containing at least 2 vectors. \(\therefore \) \(\dim(V) \geq 2 \).

4. Knowing \(\{ 1 + x + x^2, 1 + x, x + x^2 \} \) is LI, prove it is a basis for \(P_2 \) using a dimension argument.
Proof. (Proof by contradiction) Assume \(\{ 1 + x + x^2, 1 + x, x + x^2 \} \) is not a basis for \(P_2 \).
\(\therefore \{ 1 + x + x^2, 1 + x, x + x^2 \} \) is LI, not a basis but can be expanded to a basis.
\(\therefore \dim(P_2) \geq 3 \), which is a contradiction to \(\dim(P_2) = 3 \).
\(\therefore \{ 1 + x + x^2, 1 + x, x + x^2 \} \) is a basis for \(P_2 \). QED.

5. Knowing \(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \) is a spanning set for \(M_{2 \times 2} \), prove it is LI using a dimension argument.
Proof. (proof by contradiction) Assume the set is LD and is thus not a basis.
\(\therefore \) The set spans \(M_{2 \times 2} \).
\(\therefore \) It can be shrunk to a basis
\(\therefore \dim(M_{2 \times 2}) < 4 \) which is a contradiction to \(\dim(M_{2 \times 2}) = 4 \).
\(\therefore \) It is LI. QED.

6. Knowing \(\begin{bmatrix} 2 \\ 0 \\ 3 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \) is not a spanning set for \(R^3 \), prove it is LD using a dimension argument.
Proof. (proof by contradiction) Assume the set is LI and thus can be expanded to a basis.
\(\therefore \dim(R^3) = 3 \) and thus no more vectors can be added into the set to expanded it to basis of 4 or more vectors.
\(\therefore \) The set is a basis already, which is a contradiction to it not being a spanning set.
\(\therefore \) It is LD. QED.

7. Prove \(\{ 1 + x, x + x^2, 1 - x^2, 1 + 2 \cdot x + x^2 \} \) is LD using a dimension argument.
Proof. (proof by contradiction) Assume the set is LI and thus can be expanded to a basis.
\(\therefore \dim(P_2) \geq 4 \) that is a contradiction to \(\dim(P_2) = 3 \).
\(\therefore \) It is LD. QED.

8. Assume \(\{ \vec{u}, \vec{v}, \vec{w} \} \) spans a vector space \(V \) and \(\vec{x}, \vec{y}, \vec{z} \in V \) are LI. Prove \(\vec{u}, \vec{v}, \vec{w} \) are LI.
Proof. (proof by contradiction) Assume \(\vec{u}, \vec{v}, \vec{w} \) are LD and thus not a basis.
\(\therefore \{ \vec{u}, \vec{v}, \vec{w} \} \) spans \(V \) and thus can be shrunk to a basis
\(\therefore \dim(V) < 3 \).
\(\therefore \vec{x}, \vec{y}, \vec{z} \in V \) are LI and thus can be expanded to a basis.
\(\therefore \dim(V) \geq 3 \), contradicting to \(\dim(V) < 3 \).
\(\therefore \vec{u}, \vec{v}, \vec{w} \) are LI. QED.
9. Assume \(\{ \vec{u}, \vec{v}, \vec{w}, \vec{z} \} \) spans a vector space \(V \) with dimension 4. Prove \(\{ \vec{u}, \vec{v}, \vec{w}, \vec{z} \} \) is a basis for \(V \).

Proof. (proof by contradiction) Assume the set is not a basis for \(V \).

\[\dim(V) < 4 \] since the set is not a basis but can be shrunk to a basis, contradicting to \(\dim(V) = 4 \).

\(\therefore \) The set is a basis for \(V \).

10. Assume \(\{ \vec{u}, \vec{v}, \vec{w}, \vec{p} \} \) spans a vector space \(V \). If \(V \) has another spanning set \(\{ \vec{x}, \vec{y}, \vec{z} \} \), prove \(\vec{u}, \vec{v}, \vec{w}, \vec{p} \) are LD.

Proof. (proof by contradiction) Assume \(\vec{u}, \vec{v}, \vec{w}, \vec{p} \) are LI. Then they can be expanded to a basis.

\[\dim(V) \geq 4 \]

\[\therefore \{ \vec{x}, \vec{y}, \vec{z} \} \] is a spanning set for \(V \) and can be shrunk to a basis

\[\dim(V) \leq 3, \] contradicting to \(\dim(V) \geq 4 \).

\(\therefore \) \(\vec{u}, \vec{v}, \vec{w}, \vec{p} \) are LD. **QED.**