Linear dependence/independence exercises

1. Let \(\vec{u}, \vec{v}, \vec{w}, \vec{p} \) be vectors in a vector space and \(\vec{p} \) is a linear combination of \(\vec{u} \) and \(\vec{v} \). Prove: \(\vec{p} \) is a linear combination of \(\vec{u}, \vec{v} \) and \(\vec{w} \).

 \[\vec{p} = a \vec{u} + b \vec{v} \]

 Prove: \(a \vec{u} + b \vec{v} = c \vec{w} \). \(\vec{p} \) is a linear combination of \(\vec{u}, \vec{v} \) and \(\vec{w} \).

2. Prove: The zero vector is linearly dependent.

 \[\vec{0} = a \vec{u} + b \vec{v} \]

 \[a = b = 0 \]

3. Prove: If \(\vec{u} \neq \vec{0} \), then \(\vec{u} \) is linearly independent.

4. Prove: If \(\vec{u} \) and \(\vec{v} \) are linearly independent, also \(a \vec{u} + b \vec{v} = c \vec{u} + d \vec{v} \) then \(a = c \) and \(b = d \).

5. Prove: If \(\vec{u} \) and \(\vec{v} \) are linearly dependent and \(\vec{v} \neq \vec{0} \), then there is a scalar \(c \) such that \(\vec{u} = c \vec{v} \).

6. Prove: Vectors \(\vec{u}, \vec{v}, \vec{0} \) are linearly dependent.

7. Prove: If \(\vec{u}, \vec{v}, \vec{w} \) are linearly independent, then \(2 \vec{u}, 3 \vec{v}, 4 \vec{w} \) are also linearly dependent.

8. Prove: If \(\vec{u}, \vec{v} \) are linearly dependent, also \(a \vec{u} + b \vec{v}, c \vec{w} \) are also linearly dependent.

9. Prove: If \(\{\vec{u}, \vec{v}\} \) and \(\{\vec{u}, \vec{v}, \vec{w}\} \) span the same vector space, then \(\vec{w} \) is a linear combination of \(\vec{u} \) and \(\vec{v} \).

10. Prove: If \(\vec{p} \) is a linear combination of \(\vec{u}, \vec{v}, \vec{w} \) and \(\vec{w} \) is a linear combination of \(\vec{u}, \vec{v}, \vec{p} \), then \(\vec{u}, \vec{v}, \vec{p} \) are linearly dependent.

11. Prove: If \(\vec{u}, \vec{v} \) are linearly dependent, then \(\vec{u}+\vec{v}, \vec{u}-\vec{v} \) are linearly dependent.

12. Prove: If \(\vec{u}, \vec{v} \) are linearly independent, then \(\vec{u}+\vec{v}, \vec{u}-\vec{v} \) are linearly independent.

13. Prove: If \(\vec{u}, \vec{v} \) are linearly dependent while \(\vec{u} \) is not a linear combination of \(\vec{v} \), then \(\vec{v} = \vec{0} \).

14. Prove: If \(\vec{u}, \vec{v}, \vec{w} \) are linearly dependent while \(\vec{w} \) is not a linear combination of \(\vec{u}, \vec{v} \), then \(\vec{u}, \vec{v} \) are linearly dependent.

15. Prove: If \(\vec{u}, \vec{v} \) are linearly independent while \(\vec{u}, \vec{v}, \vec{w} \) are linearly dependent, then \(\vec{w} \) is a linear combination of \(\vec{u}, \vec{v} \).

16. Prove: If \(\{\vec{u}, \vec{v}\} \) and \(\{\vec{w}\} \) span the same vector space, then \(\vec{u}, \vec{v} \) are linearly dependent.

17. Prove: If \(\vec{u}, \vec{v}, \vec{w} \) are all linear combinations of \(\vec{p}, \vec{q} \), then \(\vec{u}, \vec{v}, \vec{w} \) are linearly dependent.